Imagen de portada de Amazon
Imagen de Amazon.com
Imagen de OpenLibrary

Introductory Time Series with R Paul S. P. Cowpertwait; Andrew V. Metcalfe

Por: Colaborador(es): Tipo de material: TextoTextoIdioma: ENG Detalles de publicación: Australia Springer 2009Edición: 1°EdiciónDescripción: 272 páginas Figuras, tablas 23 cmISBN:
  • 9780387886978
Tema(s): Clasificación CDD:
  • 519.5 C876i
Contenidos:
Contents -- Preface -- 1.Time Series Data -- 2.Correlation -- 3.Forecasting Strategies -- 4.Basic Stochastic Models -- 5.Regression -- 6.Stationary Models -- 7.Non-stationary Models -- 8.Long-Memory Processes -- 9.Spectral Analysis -- 10.System Identification -- 11.Multivariate Models -- 12.State Space Models -- References -- Index.
Resumen: This book gives you a step-by-step introduction to analysing time series using the open source software R. Each time series model is motivated with practical applications, and is defined in mathematical notation. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data. Finally, the model is used to analyse observed data taken from a practical application. By using R, the whole procedure can be reproduced by the reader. All the data sets used in the book are available on the website http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/. The book is written for undergraduate students of mathematics, economics, business and finance, geography, engineering and related disciplines, and postgraduate students who may need to analyse time series as part of their taught programme or their research.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Signatura topográfica Copia número Estado Código de barras
Libros Libros Biblioteca Universidad Regional Amazónica Ikiam 519.5 C876i (Navegar estantería(Abre debajo)) Ej: 1/2 Disponible 005223
Libros Libros Biblioteca Universidad Regional Amazónica Ikiam 519.5 C876i (Navegar estantería(Abre debajo)) Ej: 2/2 Disponible 005224

Contents -- Preface -- 1.Time Series Data -- 2.Correlation -- 3.Forecasting Strategies -- 4.Basic Stochastic Models -- 5.Regression -- 6.Stationary Models -- 7.Non-stationary Models -- 8.Long-Memory Processes -- 9.Spectral Analysis -- 10.System Identification -- 11.Multivariate Models -- 12.State Space Models -- References -- Index.

This book gives you a step-by-step introduction to analysing time series using the open source software R. Each time series model is motivated with practical applications, and is defined in mathematical notation. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data. Finally, the model is used to analyse observed data taken from a practical application. By using R, the whole procedure can be reproduced by the reader. All the data sets used in the book are available on the website http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/.
The book is written for undergraduate students of mathematics, economics, business and finance, geography, engineering and related disciplines, and postgraduate students who may need to analyse time series as part of their taught programme or their research.

No hay comentarios en este titulo.

para colocar un comentario.